Non-singular orbital elements for special perturbations in the two-body problem
نویسندگان
چکیده
منابع مشابه
the algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولLow-Thrust Orbital Transfers in the Two-Body Problem
Low-thrust transfers between given orbits within the two-body problem are considered; the thrust is assumed power limited. A simple method for obtaining the transfer trajectories based on the linearization of the motion near reference orbits is suggested. Required calculation accuracy can be reached by means of use of a proper number of the reference orbits. The method may be used in the case o...
متن کاملPerihelion Precession in the Special Relativistic Two-Body Problem
The classical two-body system with Lorentz-invariant Coulomb actionat-a-distance V = −k/ρ is solved in 3+1 dimensions using the manifestly covariant Hamiltonian mechanics of Stückelberg. Particular solutions for the reduced motion are obtained which correspond to bound attractive, unbound attractive, and repulsive scattering motion. A lack of perihelion precession is found in the bound attracti...
متن کاملPerturbations in a non-singular bouncing Universe
We complement the low-energy gravi-dilaton effective action of string theory with a non-local, general-covariant dilaton potential, and obtain homogeneous solutions describing a non-singular (bouncing-curvature) cosmology. We then compute, both analytically and numerically, the spectrum of amplified scalar and tensor perturbations, and draw some general lessons on how to extract observable cons...
متن کاملSingular Perturbations in a Non-linear Viscoelasticity
A non-linear equation in viscoelasticity of the form ρuρtt(t, x) = φ(u ρ x(t, x))x + ∫ t −∞ F (t− s)φ(ux(s, x))xds+ ρg(t, x) + f(x), t ≥ 0, x ∈ [0, 1], (0.1) u(t, 0) = u(t, 1) = 0, t ≥ 0, (0.2) u(s, x) = v(s, x), s ≤ 0, x ∈ [0, 1], (0.3) (where φ is non-linear) is studied when the density ρ of the material goes to zero. It will be shown that when ρ ↓ 0, solutions u of the dynamical system (0.1)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Monthly Notices of the Royal Astronomical Society
سال: 2015
ISSN: 0035-8711,1365-2966
DOI: 10.1093/mnras/stv2106